Novedades en el tratamiento del Cáncer de Páncreas

Erick Riquelme, PhD

Facultad de Medicina

Pontificia Universidad Católica De Chile

Pancreatic Cancer

- Pancreatic cancer is the sixth leading cause of cancer death worldwide
- Pancreatic cancer present an enormous challenge, as they are naturally resistant to current therapy
- Most patients present with advanced stage disease and the prognosis is dismal
- 5-year overall survival of 9-11%
- In resectable patients treated with neoadjuvant therapy and surgery, recurrence is common, 78% relapse within 5 years, typically around 1.2 years post-treatment.

Hallmarks of PDAC; Genomic Aberrations

Gene	Frecuency
KRAS	>90%
TP53	75%
CDKN2A	>70%
SMAD4	>50%

Limited set of commonly mutated genes

Low Immunogenicity

· Exclusion of CD8+ T cells and NK cells from the tumor

· Immunosuppressive immune cells in tumor (ie. Tregs)

· Poor prognosis and response to immunotherapy

CD8+ T CELL

Adequate neoantigen presentation by MHC I

Mutations > Neoantigenos

· CD8+ T cells and NK cells are present in tumor

Suppression of immunosuppressive cell types

Pancretaic Ductal Adenocarcinoma (PDAC)

Therapeutic options are limited

KRAS Treatments for PDAC

FDA Approval of KRAS Inhibitor Sotorasib for Lung Cancer (28 may, 2021)

- More than 30 percent of all human cancers including >90 % of pancreatic cancers, 45 % of colorectal cancers, 32% of lung cancers are driven by mutations of the RAS family of genes
- KRAS mutations have long been considered impossible to treat with drugs
- KRAS mutations in lung cancer localize primarily to codons 12 and 13
- KRAS serves as an on-off switch that regulates cell growth

Hope placed on Daraxonrasib

Daraxonrasib (RMC-6236), a Potent and Orally Bioavailable RAS(ON) Multi-selective, Noncovalent Tri-complex Inhibitor for the Treatment of Patients with Multiple RAS-Addicted Cancers

Phase 3 Study of Daraxonrasib (RMC-6236) in Patients With Previously Treated Metastatic Pancreatic Ductal Adenocarcinoma (PDAC) (RASolute 302)

PDAC; Failure to Respond to Immunotherapy

Immune-based therapies aim to recruit and activate T cells that recognize tumor-specific antigens

	Clinically approved checkpoint inhibitors		
	Agent	Mechanism of action	Approved for
R →	Ipilimumab (Yervoy)	mAb targeting CTLA-4	Metastatic melanoma
	Pembrolizumab (Keytruda)	mAb targeting PD-1	Metastatic melanoma, non-small-cell lung cancer, head and neck squamous cell cancer, classical Hodgkin's lymphoma
Nature Reviews Cancer	Nivolumab (Opdivo)	mAb targeting PD-1	Metastatic melanoma, non-small-cell lung cancer, renal cell carcinoma, Hodgkin's lymphoma, head and neck cancer, urothelial carcinoma
	Atezolizumab (Tecentriq)	mAb targeting PD-L1	Non-small-cell lung cancer, bladder cancer
	Avelumab (Bavencio)	mAb targeting PD-L1	Urothelial carcinoma, Merkel cell carcinoma
	Durvalumab (Imfinzi)	mAb targeting PD-L1	Urothelial carcinoma

PDAC; Failure to Immunotherapy

- Cancer antigens have generated relatively weak immune responses
- Low among of Neoantigen
- Low inflammatory infiltrate

distant tumors

Microbiota and Cancer Immunotherapy

The Gut microbiome analysis suggest that gut microbiota is a clinically relevant predictive biomarker for the response to immunotherapy

Pancreatic Cancer Kill thousands of People Every Year

MINOR SUBSET
OF PATIENTS SURVIVE
MORE THAN 5-YEARS
POST-SURGERY

MEDIAN
5 YEAR
SURVIVAL

Balachandran et al., 2017

Balachandran et al., 2017

PDAC survivors, a subgroup with special characteristics

b

of CD3+CD8

Long

Term

Long

PDAC survivors, a subgroup with special characteristics

Tumor microbial diversity was higher in LTS patients, influencing in the

Outcome of PDAC patients

Tumor Microbiome shapes Immune Tumor Microenvironment and T cells Activation

We can Modify the Mice Gut and Tumor Microbiota by Changing the Gut Microbiota?

Gut microbiota has the capacity to colonize pancreatic tumors

ATBx

LTS Microbiome have an Antitumor Effects

Bacteria Ablation can Decrease the Anti-tumoral Efficacy Induced by LTS FMT

The Shift on the Gut and Tumor Microbiome Influences the Tumor infiltrates

P = 0.0001

LTS-NED LTS-NED+CD8 Neu

FMT CD8 Abs

KPC Implant

> 2000-EE 1500-

> > 1000-

Mice that received FMT from LTS had higher numbers of CD8+T cells versus those with stools transferred from STS or HC donors

Conclusion

- PDAC are naturally resistant to current therapy; Chemotherapy,
 Immunotherapy
- Low mutations burden; cold tumor, Low among of Neoantigen, weak immune responses, Low inflammatory infiltrate, failure to Immunotherapy
- KRAS frequently mutated, G12D
- Gut and Tumor Microbiome Influences the Tumor infiltrates
- Intratumoral PDAC microbiota is influenced by the Gut microbiota, which impacts the host's antitumor immune response, which impacts the natural history of the PDAC patients.
- FMT represent an immense therapeutic opportunity to manipulate the microbiome to improve the life expectancy of PDAC patients

Aknowledgements

Erick Riquelme's Lab: Ivania Valdés, PhDc Fabian Oña, PhD Student

Collaborators:

McAllister Lab, MD Anderson Cancer Center Akbay Lab, UT Southwestern Medical Center Felipe Court (U. Mayor, CIB) Estefania Nova-Lamperti (U.Concepción)

emriquel@uc.cl emriquel@gmail.com FONDECYT 1191526, FONDECYT 1231629 Dr. Erick Riquelme

